Facile Synthesis of Porous Silicon Nanofibers by Magnesium Reduction for Application in Lithium Ion Batteries
نویسندگان
چکیده
We report a facile fabrication of porous silicon nanofibers by a simple three-stage procedure. Polymer/silicon precursor composite nanofibers are first fabricated by electrospinning, a water-based spinning dope, which undergoes subsequent heat treatment and then reduction using magnesium to be converted into porous silicon nanofibers. The porous silicon nanofibers are coated with a graphene by using a plasma-enhanced chemical vapor deposition for use as an anode material of lithium ion batteries. The porous silicon nanofibers can be mass-produced by a simple and solvent-free method, which uses an environmental-friendly polymer solution. The graphene-coated silicon nanofibers show an improved cycling performance of a capacity retention than the pure silicon nanofibers due to the suppression of the volume change and the increase of electric conductivity by the graphene.
منابع مشابه
Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries
In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...
متن کاملPorous silicon nanowires for lithium rechargeable batteries.
Porous silicon nanowire is fabricated by a simple electrospinning process combined with a magnesium reduction; this material is investigated for use as an anode material for lithium rechargeable batteries. We find that the porous silicon nanowire electrode from the simple and scalable method can deliver a high reversible capacity with an excellent cycle stability. The enhanced performance in te...
متن کاملHighly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries.
SnO2 is a promising high-capacity anode material for lithium-ion batteries (LIBs), but it usually exhibits poor cycling stability due to its huge volume variation during the lithium uptake and release process. In this work, SnO2 nanofibers and nanotubes with highly porous (HPNFs, HPNTs) structure have been synthesized by a facile emulsion electrospinning and subsequent calcination process in ai...
متن کاملSynthesis of Three - Dimensional Mesoporous Silicon from Rice Husk via SHS Route
Silicon nanoparticles are the focus of attention thanks to their potentialities in advanced applications such as new batteries, photovoltaic cells and so on. The need to porous silicon is thus rising and will follow the same trend. In this work, highly porous nanostructured silicon is synthesized via Self-propagating high-temperature synthesis (SHS) route. Microstructural and phase analyses sho...
متن کاملFacile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries.
Porous MnO/C nanotubes are synthesized by a facile hydrothermal method followed by thermal annealing, and possess excellent cyclability and high rate capability as an anode for lithium ion batteries.
متن کامل